metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

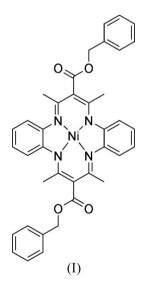
Peter D.W. Boyd,* J.B. Challis and C.E.F. Rickard

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: pdw.boyd@auckland.ac.nz

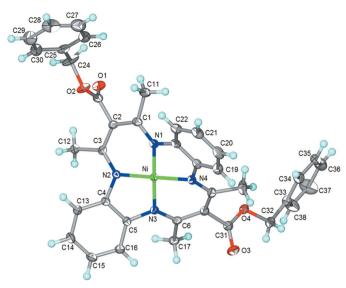
Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.104 Data-to-parameter ratio = 13.7

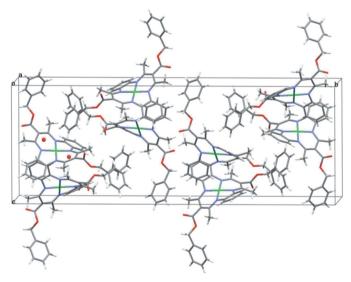

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[7,16-Bis(benzyloxycarbonyl)-6,18,15,17tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecinato- $\kappa^4 N$]nickel(II)

The title compound, $[Ni(C_{38}H_{34}N_4O_4)]$, is a four-coordinate nickel(II) complex of the 5,15-dihydro-7,16-bis(benzyloxy-carbonyl)-6,18,15,17-tetramethyldibenzo[b,i][1,4,8,11]tetra-azacyclotetradecine ligand, which forms a saddle-shaped molecule with divergent concave surfaces. The molecules assemble in the crystal structure *via* C-H···O interactions with the ester carbonyl O atoms and C-H··· π interactions with the propanediiminate portion of the complex.


Comment

The functionalization of dibenzotetraaza[14]annulene complexes of nickel(II) at the meso positions with alkoxycarbonyl and aryloxycarbonyl groups has recently been reported (Eilmes, Ptaszek & Zielińska, 2001). An extensive set of derivatives has been developed which are of interest as supramolecular hosts (Eilmes, Michalski & Zielińska, 2001; Eilmes et al., 2002, 2003: Rodakiewicz-Nowak et al., 2005). The structure of the title compound (Eilmes et al. 2003), (I), was determined as part of a study of dibenzotetraaza[14]annulene hosts for fullerenes. The divergent concave surfaces of tetraazaannulene complexes have been shown to interact with fullerenes in cocrystallate structures (Andrews et al., 1998, 1999; Croucher et al., 1999)


The molecular structure of (I) is shown in Fig. 1. The nickel tetraazaannulene complex is saddle-shaped, with two concave surfaces formed from the NiN₄ plane with either the two benzenoid rings or the two 2,4-pentanediiminate groups. This is due to steric interactions between the methyl groups and the chelate benzene rings (C22-H22···C11 = 2.536 Å, C13-

© 2006 International Union of Crystallography All rights reserved Received 22 September 2006 Accepted 22 September 2006

The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms and H atoms as arbitrary spheres (X-SEED; Barbour, 2001).

Packing arrangement of complex (I) in the crystal structure, showing the $C-H\cdots\pi$ interactions to the propanediiminate portion of the complex (MERCURY; Macrae et al., 2006).

H13···C12 = 2.500 Å, C16-H16···C17 = 2.539 Å, C19-H19···C18 = 2.495 Å) (Cotton & Czuchajowska, 1990). The Ni atom, coordinated in a near-planar geometry (Table 1), lies 0.018 (1) Å out of the N₄ plane (r.m.s. deviation 0.0093 Å). The angles between the benzene ring mean planes C9/C10/ C19-C22 (r.m.s. deviation 0.0135 Å) and C4/C5/C13-C16 (r.m.s. deviation 0.0147 Å) and the N_4 plane are 149.50 (9) and $151.79 (9)^{\circ}$, respectively, whilst in the other concave surface the angle between the pentanediiminate groups N1/N2 (r.m.s. deviation 0.0191 Å) and N3/N4 (r.m.s. deviation 0.0210 Å) and the N₄ plane are 155.67 (9) and 154.92 (11) $^{\circ}$, respectively. The angle between the benzene planes is $121.29 (9)^{\circ}$ and that between the pentanediiminate groups is 130.60 (9)°. These

values are comparable with those observed in the related nickel tetramethyltetraazaannulene complexes (Andrews et al., 1999; Wang et al., 1982). The ester groups on the methine atoms C2 and C7 are arranged anti with respect to the N₄ mean plane.

The molecules of (I) assemble in the crystal structure as shown in Fig. 2. A phenyl ring from the benzyl ester, C25-C30, approaches the centre of a neighbouring complex, with the H atoms on C28 and C29 centred over the N1/N2 and N3/N4 pentanediiminate groups (C28-H28···N3/N4 centroid Cg1 distance = 2.871 Å, C29-H29···N1/N2 centroid Cg2 distance = 2.880 Å). On the opposite face of the complex there are two longer C-H to centroid interactions from C14-H14 in a benzenoid ring of the complex (C14-H14···Cg1 = 2.908 Å) and a methyl group (C12-H12 $C \cdot \cdot \cdot Cg2 = 3.301$ Å). The two ester groups have $C-H \cdots O$ interactions, one, O2, with an aryl (C16-H16···O3 = 2.427 Å) and methyl (C17-H17A···O3 = 2.392 Å) H atoms, and the other, O1, with aryl (C20-H20...O1 = 2.626 Å and C21-H21...O1 = 2.539 Å)and methyl (C11-H11C···O1 = 2.587 Å) H atoms.

Experimental

Complex (I) was prepared by the method of Eilmes et al. (2003) and characterized by ¹H NMR and FAB mass spectrometry. Crystals were grown by layering of hexane over a CDCl₃ solution of (I).

Crystal data

[Ni(C ₃₈ H ₃₄ N ₄ O ₄)]	Z = 8
$M_r = 669.40$	$D_x = 1.388 \text{ Mg m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 10.6079 (2) Å	$\mu = 0.65 \text{ mm}^{-1}$
b = 40.5916 (2) Å	T = 150 (2) K
c = 14.8774 (2) Å	Plate, red
V = 6406.08 (15) Å ³	$0.36 \times 0.32 \times 0.16 \text{ mm}$

Data collection

Siemens SMART CCD areadetector diffractometer (i) scans Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\rm min} = 0.799, \ T_{\rm max} = 0.903$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0548P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.037$ + 14.0271*P*] where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.104$ S = 0.85 $(\Delta/\sigma)_{\rm max} = 0.011$ $\Delta \rho_{\rm max} = 0.27 \text{ e} \text{ Å}^{-3}$ 5855 reflections $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ 428 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Ni-N1	1.854 (2)	Ni-N4	1.867 (2)
Ni-N3	1.856 (2)	Ni-N2	1.867 (2)
N1-Ni-N3	178.30 (9)	N1-Ni-N2	94.23 (8)
N1-Ni-N4	85.66 (9)	N3-Ni-N2	86.06 (8)
N3-Ni-N4	94.04 (9)	N4-Ni-N2	179.47 (9)

33114 measured reflections

 $R_{\rm int} = 0.035$

 $\theta_{\rm max} = 25.4^{\circ}$

5855 independent reflections

4985 reflections with $I > 2\sigma(I)$

metal-organic papers

H atoms were placed in calculated positions and refined using a riding model [C–H = 0.95–0.99 Å), with $U_{\rm iso}$ (H) values of 1.2 or 1.5 times $U_{\rm eq}$ (C). Methyl groups were rotated to fit the H-atom positions to the observed electron density.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the University of Auckland Research Committee. We thank Dr S. W. Ng for assistance with the ellipsoid plot.

References

Andrews, P. C., Atwood, J. L., Barbour, L. J., Croucher, P. D., Nichols, P. J., Smith, N. O., Skelton, B. W., White, A. H. & Raston, C. L. (1999). J. Chem. Soc. Dalton Trans. pp. 2927–2923.

- Andrews, P. C., Atwood, J. L., Barbour, L. J., Nichols, P. J. & Raston, C. L. (1998). Chem. Eur. J. 36, 2927–2923.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Cotton, F. A. & Czuchajowska, J. (1990). Polyhedron, 21, 2533-2566.
- Croucher, P. D., Nichols, P. J. & Raston, C. L. (1999). J. Chem. Soc. Dalton Trans. pp. 279–284.
- Eilmes, J., Michalski, O. & Zielińska, K. (2001). Inorg. Chim. Acta, **317**, 103–113.
- Eilmes, J., Ptaszek, M., Dobrzycki, L. & Woźniak, K. (2003). Polyhedron, 22, 3299–3305.
- Eilmes, J., Ptaszek, M. & Woźniak, K. (2002). Polyhedron, 21, 7–17.
- Eilmes, J., Ptaszek, M. & Zielińska, K. (2001). Polyhedron, 20, 143-149.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Rodakiewicz-Nowak, J., Nowak, P., Rutkowska-Zbik, D., Ptaszek, M., Michalski, O., Mynarczuk, G. & Eilmes, J. (2005). Supramol. Chem. 17, 643–647.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. Release 97-1. University of Göttingen, Germany.
- Siemens (1995). SMART (Version 4.050) and SAINT (Version 4.050). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, Y., Peng, S. M., Lee, Y. L., Chuang, M. C., Tang, C. P. & Wang, C. J. (1982). J. Chin. Chem. Soc. 29, 217–224.